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CLOSED EQUATION FOR THE PROBABILITY DISTRIBUTION OF 

VELOCITY AND TEMPERATURE DIFFERENCES BETWEEN TWO 

POINTS IN AN ISOTROPICALLY TURBULENT STREAM OF AN 

INCOMPRESSIBLE FLUID 

V. A. Sosinovich UDC 532.517.4 

A closed equation is derived for the characteristic function describing the 
joint probabilitydistribution of velocity and temperature differences between 
two points in an isotropically turbulent stream of an incompressible fluid. 

Almost all theories of isotropic turbulence are based either on the formalism of moment 
equations in any form whatever or on the equation for the characteristic functional. The 
outcomes of these theories, viz., the closed systems of equations each yields for the spec- 
tral energy, are quite similar []]. An analysis of these equations reveals that they are all 
incompatible with the mechanism of stagewise energy transfer over the spectrum of fluctua- 
tions characterized by successively different scales. The expression for the spectral energy 
within the inertial range, which can be derived from these equations, contains the mean- 
square energy of the velocity field. At very high values of the Reynolds number the discrep- 
ancy between theory and experiment widens without bounds. This deficiency is overcome by 
using certain procedures which ensure correct solutions for the inertial range of scales. It 
is quite doubtful, however, whether the equations thus derived remain valid over the entire 
universal range. Under consideration here are approximations of theKraichnan "trial field" 
kind [2]. 

The lack of decisive progress made in deriving an equation for the simplest two-point 
characteristic of isotropic turbulence along conventional lines suggests that new approaches 
to the problemmay have to be tried. One of such approaches could be the formalism based largely 
on the equations for finite-dimensional functions describing the probability distributions of 
turbulence fields (F-DFPD formalism, for short). Some developments have. already been made so 
far with regard to this formalism: an array of F-DFPD equations has been derived [3-6], 
several methods of deriving closed systems of F-DFPD equations have been proposed [7-]3], 
and attempts have been made to analyze the equations for a two-point distribution function 
covering the inertialscale range, whereupon the corresponding approximate equations have 
been found to be compatible with the Kolmogorov-Obukhov law [9,]],]3]. Closed F-DFPD equa- 
tions have, furthermore, been derived [14-]6] on the basis of a semiempirical theory. The 
feasibility of developing an analytical theory on the basis of F-DFPD equations has not yet 
been established, although the results of some studies in this direction [9,1],17,]8] are 
promising. 
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Is there any a priori evidence which indicates that this approach may be a successful 
one? With this approach it is, apparently, possible to utilize to the fullest extent experi- 
mentally obtained statistical data on turbulent fields. When any probability distribution 
function is close to the Gaussian function, e.g., then this can be irmedlately utilized to 
the fullest extent by inserting the distribution function in a quasi-Gaussian form into the 
equation. In the approach based on the formalism of moment equations, on the other hand, one 
can utilize only some properties of a normal distribution. We further note that the struc- 
ture of F-DFPD equations, namely the linearity of the term which represents convective 
transfer, constitutes an important advantage of this approach over the moment approach. 

Further analysis will be limited to equations for two-point distribution functions 
only. The problem of closure at the level of an equation for f(2) reduces to formulation of 
a hypothesis which allows f(3) to be expressed in terms of f(2) and moments of the latter. 
When this problem has been somehow solved, there still remains the even more difficult prob- 
lem of solving a usually nonlinear closed equation for f(2). This function is also multi- 
dimensional, since even in the isotropic case it depends on seven arguments. No method of 
solving such equations has yet been developed. If the equation for f(2) is written in inte- 
gral form and a step is taken from this equation to equations for the moments, with certain 
assumptions regarding the form of f(2), however, then it is found possible to obtain closed 
equations for the moments quite different than the conventional equations based on the for- 
malism of moment equations or of the Hopf equation for the characteristic functional. Here 
we will attempt to realize such a program of action. 

All equations for f(2) which have been derived so far are too intricate for our purpose. 
For this reason, we will derive here a closed equation for the characteristic two-point func- 
tion q~ describing the joint probability distribution of velocity and temperature differences 
(with a passive admixture present) in an isotropically turbulent stream of an incompressible 
fluid. This equation will be relatively simple and well suited for realization of the entire 
subsequent program of deriving closed equations for the structural functions of turbulent 
velocity and temperature fields. The characteristic function ~ is defined by the expression 

cp ~ %. t (0, ~) = < exp [i0=AV= (r, t) q- i~IAT (r, t)] >. ( I ) 

As the  dynamic e q u a t i o n s  f o r  v e l o c i t y  and t e m p e r a t u r e  f i e l d s ,  we u s e  t h e  Nav ie r - -S tokes  equa-  
t i o n s  and t he  e q u a t i o n  o f  c o n v e c t i v e  t r a n s f e r  f o r  t h e  p a s s i v e  a d m i x t u r e  we w r i t e  i n  t h e  form 

1 ~ (x - -  x') 
OV(x,ot 0 ~-V(x, 0.v~V(x, t )=f(x,  t)+va~V(x, 0 + - - ~ - - j a x '  Ix--x'l ~ v~,v..:V(x', 0V(x', t); (2) 

#T(x, t) ~V(x, t).v.T(x, t )=~(x ,  t)+ xA.T(x, t). (3) 
dt 

The s t a t i s t i c a l  p r o p e r t i e s  o f  t he  random f i e l d s  f ( x ,  t )  and q0(x, t )  must  be s t i p u l a t e d .  We 
w i l l  assume t h a t  t h e s e  f i e l d s  a r e  G a u s s i a n  and ~ - c o r r e l a t e d  in  t ime  [ 1 9 ] .  An open e q u a t i o n  
f o r  ~0 can be o b t a i n e d  by t h e  method shown in  [ 5 , 2 0 ] .  In  t h e  same manner ,  and c o n s i d e r i n g  t h e  
i s o t r o p i c  c a s e  o n l y ,  we o b t a i n  f o r  ~ t h e  e q u a t i o n  

-( ~-0 __ iVrVo ) % t (0, q) -- [/fPx t (0', rl'!O, rl, r)]o %, t (0, rl) (4) 

with the notations 

~ (r) O=% - -  -!l V ( r ) ~ - - ( A ~ - - ~ )  ~ +X n 

4~ ~ ~ + -~- (Va'V')'; (5/  

~----~. ~0', n' IO, n, r ) =  %' ~'~ (a, ~l; a', n') %,, (0, ~) (6) 

F u n c t i o n  ~(s)~-~,x.t(0, ~; 0', ~') in  e q u a l i t y  (6) i s  t h e  c h a r a c t e r i s t i c  f u n c t i o n  d e s c r i b i n g  t h e  
j o i n t  p r o b a b i l i t y  d e n s i t y  o f  v e l o c i t y  and t e m p e r a t u r e  d i f f e r e n c e s  b e tw een  two p o i n t s  (0 ,  r )  
and o f  a b s o l u t e  v e l o c i t y  and t e m p e r a t u r e  a t  a t h i r d  p o i n t  ( x ) .  R e p r e s e n t i n g  c0(3) as  t h e  p r o -  
d u c t  ~ 0 d o e s  n o t  s o l v e  t h e  c l o s u r e  p rob l em ,  o f  c o u r s e ,  b u t  i s  u s e f u l  on a c c o u n t  o f  a l l  o p e r a -  
t i o n s  o f  d i f f e r e n t i a t i o n  and i n t e g r a t i o n  programmed in  t h e  o p e r a t o r  L p e r t a i n i n g  t o  f u n c t i o n  
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only. Equation (4) remains open, because function~depends on the statistics at three 
points. 

Function ~ can be expanded into a power series with respect to arguments 0, n, 0' ' , n , 

if from the corresponding expansion of function ~(s) are excluded all terms which relate 
only to moments depending on vector r. This statement, which provides a prescription for 
writing approximate expressions for ~, can be easily proved by expanding the logarithms of 
characteristic functions @ and @(s) in expression (6) into Taylor series. 

In o~der to proceed, it is now necessary to make some assumption regarding the form of 
function @, As a workable hypothesis, let this function be a Gaussian one. The correspon- 
ding assumption regarding @(3) implies that in the expansion of this function into a Gramme 
-Charles series the effect of all moments relating to point x is accounted for in the Gaus- 
sian approximation only. The departure from a normal distribution is accounted for by terms 
in the expansion which relate to points (0, r). Such a rough approximation of function 
cannot be justified entirely. It is permissibleonly because in expression (4) there appears 
not this function itself but its moments (variables 0' and n' are assumed to become zero 
after operation ~ has been performed). This hypothesis leads to a self-consistent equation 
for ~. ,. 

We write the expression for ~ in the explicit form 

= exp - -  ~ B (0) O 's q- Ba~ (x) 0a0; - -  B=, (z) 0~0 0 - -  - ~  

With such  a f u n c t i o n  ~ .  Eq. (4) w i l l  o b v i o u s l y  be  a c l o s e d  one w i t h  r e s p e c t  to  q .  inasmuch 
a s  any o f  t he  f u n c t i o n s  on t h e  r i g h t - h a n d  s i d e  o f  e x p r e s s i o n  (7) can  be  e x p r e s s e d  t h rough  r  

S ince  t h e  f u n c t i o n a l  dependence  of  ~0 on v a r i a b l e s  0 '  and n'  has  now been  c o m p l e t e l y  de -  
fined, it is possible to program in expression (5) the operations of differentiation with 
respect to these two variables and then to equate both variables to zero. 

In expression (5) for the operator L there also appear operators of differentiation with 
respect to variable x. This differentiation can be partially realized by using the represen- 
tation of tensors BaB(x) in terms of scalar functions, which is valid in the case of an iso- 
tropic helical velocity field [2]], and also using expressions which relate structural func- 
tions of turbulent fields to the correlation functions of these fields. Simple but somewhat 
unwieldy calculations yield an equation for ~r.t(O, ~) which we will write in the conventional 
in statistical physics form (o / 

- - & - + L o  %,t(O, ~)=L(O, n, r, t ) % , , ( e ,  ~) (8) 

with 

Lo = - -  iV,V e �9 

We then thoroughly explicate the scalar expression L(e, n, r, 
omitted (for the sake of brevity) 

L (0, ~1, r, t) = ~2 (r) ~l~+ f~:~ (r) 0:% + i~=~v (r) 0:%0v ; 

~(r)  = 2Nd - -  1 ~F(r) -F xH"(r) X(r); 
2 

2 ~-dS~ - 1 ~=~(r) = ~-  -~- r + 2vD"(r) V~(r);  

9 ~ v  (r) = 32n 

• [D' (x) ~ m(~)+ D' (x) D, (z) m(E)];~, 

- -  3 15 lim I'l" (r); ed = - -  v lira D"(r); 
Nd-~- "2 r-,o 2 r~O 

I 6 - '  X (r) = - -  1 + -~- (r); V~,~ (r) = ~1, (r) A=~ (r) + n2 (r) &,~, 

~ __ i I I --F 2[~-! (r); n,(r )  = I ---7- v(r )  + (r); n~(r) - 

t) with the time argument 

(9) 

(1o) 

(11) 

(12) 

(~3) 

(14) 

(15) 

(~6) 
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6 (r) = - -  r [In H'  (r)]'; u (r) = - -  r Iln D" (r)r; ~ (r) = - -  r [In D' (r)l'. (17)  

When the correlation functions of the random fields f(x, t) and g0(x, t) are taken in the 
form F(r) = (2/3)~ e~p (--r2/L 2) and ~(r) = 2N exp (--r2/L=), respectively, then for r << L 
the structural tensor ~8(r) and the structural function $(r) can be expressed as 

O ~ ( r )  = 2 ~ r z r2 
3 L' ~=~(r); ~ ' ( r ) = 2 #  L' (18)  

Parameters ~- and N defining the rate of "energy" pumping up the velocity field and the tem- 
perature field are, just as parameter L, obviously external parameters of the problem. The 
restriction r I.< L is justified by its being exactly the constraint which defines one limit 
of the universal scale range. 

The expression for ~(~) is 

1 p(2t) (x=~ + ~.:x~) -t- ~3 v ~ ,  l = 1, 2, (1 9) m(dl~ = P~') x : •  q- --~ - -  oU) 

w h e r e  

l[- 
pC2) = ] 

i~ ! ( o ' +  1) --P 

0 

p(t)  

oj 2 o -  (o, + I) -~- 

4 

-~-  v . ,  (20) 
n = l  

;0 - - 2  0 12 L:~176176 
2 0 - - 6  

4(o -- (~' -- 3) 

( o '  -- 3) --9 

2~ 

0__ ( ~  - 3) 

0 

[ 4 o - - ( o 2 + 7 ) - ~  - ]  

__.0 (o, + 1) 

- -  60) 

(21) 

(22)  

t~, ,= I~(x) 
I~ (z) 

1 

o = (x.~t). 

; (23) 

(24) 

Expressions (;I)-(24) indicate that expression L(e, n, r, t) is completely defined by 
simultaneous structural functions of velocity and temperature fields and external random 
fields. Since the simultaneous structural function D(r) of the velocity field is determined 
by the difference of velocities at instant of time t at points a distance r apart, obviously 
Eq. (8) will be invariant with respect to Galileo transformations. 

Using expression (8) for the derivation of equations for the structural functions D(r) 
and H(r), we arrive at exact (and, of course, open) equations for these functions, i.e., we 
find that the equations for D(r) and H(r) obtained from the approximate expression (8) are 
identical to those which can be obtained directly from the array of moment equations. This 
is another argument in favor of the chosen approximation. 

The characteristic function ~r,t(e, n) must satisfy a number of additional conditions. 
Those conditions can be stated as 

637 



(H~)o : l; (Ht~)o = 0, i = 2, 3 ..... 6; (25) 

-~, H~ = V,= V o= , 

(26) 
H~ = Vr~Ve~Vs=; H, = Vr#VrvVe=Ve~V%" 

Condition I is the condition of normalization, conditions 2, 3, 4 signify zero first moments 
of velocity and temperature differences in an isotropic stream, conditions 5, 6 are conse- 
quences of the helicity of the velocity field. 

That function ~ defined by expression (8) satisfies conditions I-6 can be proved as 
follows. In order that these conditions be satisfied at all times, it is obviously neces- 
sary that the derivatives of the left-hand sides of these equalities be zero. Then, if these 
conditions are satisfied at t = O, i.e., the characteristic function has been correctly 
chosen at the start, they will be satisfied at any other time. Formally this implies that 

d (H,~)o=H, ( d ~ )  =0.  (27) 
dt - J  0 

With the aid of expression (8), we obtain 

(Blt0~)o + [Bit  (0, n, r, 0lo = 0. (28) 
Considering this condition (28) for each case i = I, 2, ..., 6 reveals a complete self- 
consistency of all conditions, if only the approximations 

( AV=(6 AVa(0 AVv (r) AVa(0 > = D=o(0 Dva (r) + D=v (r) D~(0 + D=6(0 Day (0; (29) 

< AV= (0 AT(0 > = 0 (30) 
are made in the calculations. Equality (30) is always satisfied in an isotropic stream of an 
incompressible fluid [21]. Equality (29) is satisfied as a consequence of the chosen approxi- 
mation for function ~. 

After a Fourier transformation with respect to variables 8, ~ of Eq. (8), we arrive at 
an equation for the probability density distribution Pr,t(V, T) of velocity and temperature 
differences between two points. Function Pr,t(V, T) must be a real nonnegative one. This 
property is ensured by Eq. (8), which can be easily proved exactly as in [8]. The uniquely 
essential point in the proof is L(V, T, r, t) being a real quantity. This is evident from 
expression (lO), with real coefficients at the second powers of 8, n and imaginary coeffi- 
cients at the third powers of these variables. 

A very important step is the change from differential to integral form of Eq. (8) for @. 
In order to make this change, it is necessary to know the Green function for the left-hand 
side of Eq. (8). This function is the solution to the equation 

(~0 _ iV, V a ) G(O, n, r, 0 = 6~) 6(~) 6(r) 6(t). (3J) 

Solving this equation by the method in [22] and using the initial condition G(t) = O, if t < 
O, we find that 

G(O, q, r, t)= O(t._____~) exp [i ~ ]  8(,). (32) 
(2=7 i 

With this expression for Green's functlon, it is now possible to write Eq. (8) in integral 
form as 

= f a y f  ao' exp i ( o - - o ' ) ( r - - y )  C(O, n, y, ~ % , , ( 0 ,  n). (33) t( o, ~) 
t - - z  

The term which represents the initial conditions in explicit form and which decays fast has 
been omitted here. 

In conclusion, we note that the change from Eq. (8) to Eq. (33) is a purely formal and 
also reversible step. When from Eq. (33) are derived equations for the moments of the char- 
acteristic function @, i.e., for the structural functions D(r) and H(r), however, then the 
change from Eq. (8) to Eq. (33) becomes "fixed" and irreversible. Such a procedure most 

638 



easily utilizes the linearity of the convection term in Eq. (8) for the characteristic func- 
tion. The derivation of closed equations for D(r) and H(r) obviously requires that some 
statistical hypothesis regarding the form of function ~ in Eq. (33) be adopted. The deriva- 
tion of closed equations for the structural functions on the basis of Eq. (33) Will be the 
next task. 

NOTATION 

f(n), n-point probability distribution function; V(r, t), velocity field; T(r, t), tem- 
perature field; AV(r), velocity difference between points r, 0; AT(r), temperature difference 
between points r, 0; 0, n, arguments of the characteristic function ~; f(x, t), external ran- 
dom force; @(x, t), external random source of temperature nonuniformity; ~eB(r), structural 
tensor of the f(x, t) field; ~(r), structural function of the ~(x, t) field; B~8(r) , corre- 
lation tensor of the V(r) field; B(O), turbulence energy per unit mass of fluid; G(r), cor- 
relation function of the T(r) field; D(r), longitudinal structural function of the V(r) field; 
H(r), structural function of the T(r) field; Vr, a gradient; At, Laplacian; A',= 4xft,=,.. A~(r) 

= v=v~ --  8=B; ~=~ (r) =A=~ ( r ) -  6=~; v = r / r ;  ~ =  y /y ;  x = x/x; ~ = ~ z ;  p = Wr; o = ~ r ;  ~ = z/r;  ~=(x-~)i  

[[dxdz=~ ~dxdz6(x+z--r); vectors x, z, r form the triangle x + z -- r = O; ab:cd = a~bsc~d 6, 
A 
with a summation from I to 3 over all repeated indices everywhere; | (t) = I when t > 0; 
| = 0 when t < O; L, external turbulence scale; e, rate of pumping up the turbulence 
energy per unit mass; parameter N determines the rate of pumping up the temperature nonuni- 

fortuity; and []o = []18=o �9 

f 
LITERATURE CITED 

I. P. C. Leslie, Developments in the Theory of Turbulence, Claredon Press, Oxford (1973). 
2. R. N. Kraichnan, J. Fluid Mech., 4_/7, 513 (1971). 
3. T. S. Lundgren, Phys. Fluids, 10, No. 5, 969 (1967). 
4. E. A. Novikov, Dokl. Akad. Nauk SSSR, 177, No. 2, 299 (1967). 
5. A. S. Monin, Dokl. Akad. Nauk SSSR, 177, No. 5, 1036 (1967). 
6. V. A. Sosinovich, Dokl. Akad. Nauk BSSR, 16, No. 10, 898 (1972). 
7. V. M. Ulinich and B. Ya. Lyubimov, Zh. Eksp. Teor. Fiz., 55, No. 3, 951 (1968). 
8. V.M. levlev, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1, 91 (1970). 
9. T. S. Lundgren, Lect. Notes Phys., No. 12, 1 (1972). 
I0. T. L. Perel'man and V. A. Sosinovich, Teor. Mat. Fiz., 17, No. I, 131 (1973). 
11. V. R. Kuznetsov, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3, 32 (1976). 
12. R. L. Fox, Phys. Fluids, 16, 977 (1974). 
13. T. L. Perelman and V. A~ S--osinovich, Transport Theory and Statistical Physics, 4(4), 

155 (1975). 
14. T. S. Lundgren, Phys. Fluids, 12, No. 3, 485 (1968). 
15. A. T. Onufriev, Prikl. Mekh. Tekh. Fiz., No. 2, 62 (1970). 
16. C. Dopazo, Phys. Fluids, 18, No. 4, 307 (1975). 
17. V. A. Sosinovich, Dokl. Akad. Nauk BSSR, 21, No. 12, 1093 (1977). 
18. V. A. Sosinovich, Dokl. Akad. Nauk BSSR, 22, No. 2, 146 (1978). 
19. E. A. Novikov, Zh. Eksp. Teor. Fiz., 47, No. 5, 1919 (1964). 
20. V. M. levlev, Turbulent Motion of Hot C---ontinuous Media [in Russian], Nauka, Moscow 

(1975). 
21. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence, 

Vol. 2, MIT Press (1975). 
22. R. Balescu, Statistical Mechanics of Charged Particles, Krieger (|963). 

639 


